1. (a)

(i)

Calculate correctly
$$\frac{0.0880 \times 25.0}{1000} = 2.20 \times 10^{-3} \text{ mol}$$

OR 0.00220 mol ✓

ALLOW 0.0022 **OR** 2.2×10^{-3} mol

1

1

1

1

2

(ii) Calculates correctly
$$\frac{0.00220}{2} = 1.10 \times 10^{-3} \text{ mol}$$

OR 0.00110 mol ✓

ALLOW 0.0011 **OR** 1.1×10^{-3} mol **ALLOW** ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

(iii) $\frac{0.00110 \times 1000}{17.60} = 0.0625 \text{ mol dm}^{-3}$ **OR** $6.25 \times 10^{-2} \text{ mol dm}^{-3} \checkmark$ *ALLOW* 0.063 **OR** $6.3 \times 10^{-2} \text{ mol dm}^{-3}$ *ALLOW* ECF for answer (ii) $\times 1000/17.60$ **OR** *ECF from* (i) for answer (i)/2 $\times 1000/17.60$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

- (b) (i) (The number of) Water(s) of crystallisation ✓ IGNORE hydrated OR hydrous
 - (ii) 142.1 **✓**

ALLOW 142 ALLOW M_r expressed as a sum ALLOW ECF from incorrect M_r and x is calculated correctly

$$x = \frac{(322.1 - 142.1)}{18.0} = 10 \checkmark$$

ALLOW ECF values of x from nearest whole number to calculator value ALLOW 2 marks if final answer is 10 without any working

[6]

2. (i) O goes from -2 to $0 \checkmark$

Oxidation numbers may be seen with equation

N goes from +5 to +4 \checkmark

N is reduced AND O is oxidised \checkmark

Third mark is dependent upon seeing a reduction in oxidation number of N and an increase in oxidation number of O ALLOW ECF for third mark for N is oxidised and O is reduced if incorrect oxidation numbers support this IGNORE references to strontium IGNORE references to electron loss OR gain DO NOT ALLOW 'One increases and one decreases'

(ii) Calculates correctly:

Mol of Sr(NO₃)₂ =
$$\frac{5.29}{211.6} = 0.0250$$

ALLOW 0.025

Calculates correctly:

Mol of gas = $5/2 \times 0.0250 = 0.0625$

ALLOW ECF for first answer $\times 2.5$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

Calculates correctly:

Volume of gas = $24.0 \times 0.0625 = 1.50 \text{ dm}^3 \checkmark$

ALLOW ECF for second answer $\times 24(.0)$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

DO NOT ALLOW ECF of first answer \times 24(.0) (which gives 0.6(0) dm³) as this has not measured the volume of any gas, simply 0.0250 mol of solid Sr(NO₃)₂ converted into a gas

i.e. This answer would give **one** mark

ALLOW 1.5 dm^3

ALLOW ECF producing correct volume of NO₂ only

i.e. $1.2(0) dm^3$ would give **two** marks

OR

ALLOW ECF producing correct volume of O_2 only *i.e.* 0.3(0) dm³ would give **two** marks

[6]

3

3

3. 0.0268 **OR** 0.027 **OR** 0.02675 mol ✓ (i) NO OTHER ACCEPTABLE ANSWER

 1.61×10^{22} (ii) **ALLOW** 1.6×10^{22} up to calculator value ALLOW **ECF** answer to (i) $\times 6.02 \times 10^{23}$ **ALLOW** any value for N_A in the range: $6.0 \times 10^{23} - 6.1 \times 10^{23}$

[2]

1

1

2

1

1

1

1

4. (a) BaO
$$\checkmark$$

Ba₃N₂ \checkmark
Treat any show

Treat any shown charges as working and ignore. Treat B for Ba as a slip

(b) (i)
$$\frac{0.11}{137.3}$$

mark is for the working out which MUST lead to the

correct answer of 8×10^{-4} up to calculator value

- 19.2 (ii) OR calculated answer to (b)(i) \times 24000 \checkmark ALLOW 19 up to calculator value.
- (iii) 8.0×10^{-3} OR calculated answer to (b)(i) \times 10 \checkmark **ALLOW** 8.01 \times 10⁻³ up to calculator value
- (iv) any pH > 7 but <15 \checkmark ALLOW a correct range of pH.
- Less barium to react **OR** (c)

some barium has already reacted \checkmark ALLOW less volume because contains some BaO or Ba₃N₂

(d) reactivity increases (down the group) \checkmark

atomic radii increase **OR** there are more shells \checkmark

there is more shielding OR more screening \checkmark

the nuclear attraction decreases **OR** Increased shielding and distance outweigh the increased nuclear charge \checkmark

easier to remove (outer) electrons **OR** ionisation energy decreases \checkmark

USE annotations with ticks, crosses, ecf, etc for this part. DO NOT ALLOW more orbitals OR more sub-shells 'More' is essential ALLOW 'more electron repulsion from inner shells' ALLOW 'nuclear pull' IGNORE any reference to 'effective nuclear charge' ALLOW easier to form positive ion

[12]

5

2

1

1

5. (i) mol HCl = 1.50×10^{-2} ~

volume HCl(aq) = 75.0 \checkmark *ALLOW* answers to 2 significant figures *ALLOW* ecf from wrong number of moles *i.e* $\frac{moles of HCI \times 1000}{0.200}$ *ALLOW* one mark for 37.5 (from incorrect 1:1 ratio)

(ii) 180 🗸

No other acceptable answer

[3]

6.	(i)	Molar mass of $CaCO_3 = 100.1 \text{ g mol}^{-1}$ (1) 2.68/100.1 = 0.0268/0.027 (1)	2		
	(ii)	$0.0268 \text{ mol} \times 24,000 = 643 \text{ cm}^3$ (1)	1		
	(iii)	moles $HNO_3 = 2 \times 0.0268$ = 0.0536 /0.054 mol (1) (<i>i.e. answer to</i> (<i>i</i>) × 2)			
		volume of $HNO_3 = 0.0536 \times 1000/2.50 = 21.4 \text{ cm}^3$ (1)	2	[5]	
7.	(i)	Simplest (whole number) ratio of atoms/moles/elements ✓	1		
	(ii)	ratio Rb : Ag : I = 7.42/85.5 : 37.48/108 : 55.10/127			
		or 0.0868 : 0.347 : 0.434			
		or 1 : 4 : 5 🗸			
		$= RbAg_4I_5 \checkmark$	2	[3]	
8.	(a)	(i) $12 \times 50/1000 = 0.600 \text{ mol }\checkmark$	1		
		(ii) 4 mol HCl \rightarrow 1 mol Cl ₂ / moles Cl ₂ = 0.15 mol \checkmark			
		vol of $Cl_2 = 0.15 \times 24 = 3.60 \text{ dm}^3 \checkmark$ 2nd mark is consequential on molar ratio given	2		
	(b)	 Evidence that the oxidation number of Mn has reduced and one of the oxidation numbers correct (ie MnO₂: ox no 			
		of $Mn = +4$ or $MnCl_2$: ox no of $Mn = +2 \checkmark$ The other oxidation number of Mn is correct			
		ie in MnO ₂ : ox no of Mn = $+4$			
		or in MnCl ₂ : ox no of Mn = $+2 \checkmark$	2		
				[5]	

9.	(i)	mass = $0.0500 \times 23.0 = 1.15$ g \checkmark 1	
	(11)	wolume $H_2 = 0.0250 \times 24 = 0.600 \text{ dm}^3 \checkmark$ 2 ecf from calculated moles H_2	
		$0.0500 \text{ mol in } 50.0 \text{ cm}^3$ 1	
	(iii)	concentration = $0.0500 \times 20 = 1.00 \text{ mol dm}^{-3}$ \checkmark	[4]

10. (i) $2Na + O_2 \rightarrow Na_2O_2 \checkmark$ (ii) $Na_2O_2 + 2H_2O \rightarrow H_2O_2 + 2NaOH \checkmark$ (iii) electron count (14) for rest of molecule correct 2[4]

11. $M(BaO) = 137 + 16 = 153 \checkmark$ moles BaO = 500/153 or 3.268 mol \checkmark moles Ba = 3.268/2 or 1.634 \checkmark mass Ba formed = 1.634 × 137 = 224 g \checkmark

> accept 223.856209/223.86/223.9 g. if 6 mol BaO forms 3 mol Ba, award 3rd mark

Alternative method mass 6BaO=918 g ✓ mass 3Ba = 411 g ✓ 1g BaO forms 411/918 g Ba ✓ 500 g BaO forms 223.856209/223.86/223.9 g Ba ✓

[4]

12.	(i)	ratio N : H : S : O = $\frac{24.12}{14}$: $\frac{6.94}{1}$: $\frac{27.61}{32.1}$: $\frac{41.33}{16}$:	
		= 2 : 8 : 1 : 3	
		Empirical formula = $N_2H_8SO_3$ $N_2H_4SO_3$ is worth 1 mark from consistent use of at nos.	2
	(ii)	$H_{2}O + 2NH_{3} + SO_{2} \rightarrow (NH_{4})_{2}SO_{3}\checkmark$ (Award mark for $N_{2}H_{8}SO_{3}$)	1

[3]

13.	(a)	(i)	Amount of substance that has the same number of	
			particles as there are atoms in 12 g of $^{12}C/$	
			6×10^{23} / Avogadro's Number	1
		(ii)	moles = $\frac{0.275 \times 120}{1000}$ = 0.0330 mol \checkmark	
			moles $Cl_2 = \frac{0.0330}{2} = 0.0165 \text{ mol}\checkmark$	1
		(iii)	volume $Cl_2 = 0.0165 \times 24000 = 396 \text{ cm}^3 \checkmark 0.396 \text{ dm}^3$	
			792 cm ³ worth 1 mark (no molar ratio)	
			$1584 \text{ cm}^3 \text{ worth } 1 \text{ mark } (x 2)$	
			units needed.	2
		(iv)	bleach / disinfectant /sterilising /killing germs	1
	(b)	NaC	lO₃√	1

(b) NaC
$$lO_3 \checkmark$$

14.

[6]

Mass Sb₂S₃ in stibuite = 5% of 500 kg = 25.0 kg \checkmark (i) Moles Sb₂S₃ = $\frac{25.0 \times 10^3}{340}$ / 73.5/ 73.529 /73.53/ 74 mol \checkmark (calculator value: 73.52941176) If 5% is not used, 1471 mol; ecf for 2nd mark

(calculator value: 1470.588235)

If 5% is used 2nd, 73.6 mol: OK for both marks

moles Sb = 2×73.5 mol \checkmark (ii)

mass Sb = $2 \times 73.5 \times 122$ g = 17.9 kg \checkmark

If the 2 isn't used, answer = $73.5 \times 122 = 8.95$ \checkmark ecf ans from (i) x 2ecf ans above x 2

OR

% Sb = 244/340 = 71.7% ✓ mass Sb = $25.0 \times 71.7/100 = 17.9$ kg \checkmark (ecf as above) 2

[4]

2

15.	(i)	Molar mass CaO = 56.1 (g mol ⁻¹) \checkmark (anywhere)	2	
		moles CaO = $\frac{1.50}{56.1}$ = = 0.0267/0.027 \checkmark calc: 0.0267379		
		Allow 56 which gives 0.0268		
	(ii)	moles $HNO_3 = 2 \times 0.0267$		
		$= 0.0534 \text{ or } 0.0535 / 0.053 \text{ mol } \checkmark$		
		(i.e. answer to (i) x 2)		
		volume of HNO ₃ = $\frac{0.0534 \text{ (or 5)} \times 1000}{2.50} = 21.4 \text{ cm}^3 \checkmark$	2	
		calc from value above = 21.3903743		
		If 0.053 mol, answer is 21 cm ³ but accept 21.2 cm ³ If 0.054 mol, answer is 22 cm ³ but accept 21.6 cm ³		
				[4]
16.	(i)	dative covalent, bonded pair comes from same atom/ electron pair is donated from one atom/ both electrons are from the same atom \checkmark	1	
	(ii)	$Ca(NO_3)_2 \checkmark \rightarrow CaO + 2NO_2 + \frac{1}{2}O_2 \checkmark$ or double equation with $2/2/4/1$	1	
				[2]
17.	(i)	$203.3 \text{ g mol}^{-1} \checkmark$ Accept 203	1	
	(ii)	white precipitate / goes white \checkmark	1	
	(iii)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$		
		equation \checkmark state symbols \checkmark AgCl dissolves in NH ₃ (aq) \checkmark	2	
	(iv)	AgBr dissolves in conc $NH_3(aq)/$ partially soluble in $NH_3(aq) \checkmark$		
		AgI insoluble in NH ₃ (aq) ✓	3	
				[7]

PhysicsandMathsTutor.com

	(ii)	reduction = $545 \times 60/100 = 327 \text{ dm}^3 \checkmark$		[3]
19.	(i)	moles $HCl = 2.0 \times 50/1000 = 0.10$	1	
	(ii)	moles $Ca = \frac{1}{2} \times \text{moles HC}l = 0.050 \checkmark$ mass $Ca = 40.1 \times 0.050 = 2.00 \text{ g} / 2.005 \text{ g} \checkmark$ (accept $40 \times 0.050 = 2.0 \text{ g}$) (mass Ca of 4.0 g would score 1 mark as 'ecf' as molar ratio has not been identified)	2	
	(iii)	Ca has reacted with water \checkmark Ca + 2H ₂ O \rightarrow Ca(OH) ₂ + H ₂ $\checkmark \checkmark$ <i>state symbols not required</i>		
		1st mark for H_2 2nd mark is for the rest of the balanced equation	3	[6]
20.	(i)	moles $Ti = 1.44/47.9 = 0.0301 \text{ mol}/0.03 \text{ mol}$ (accept use of answer from (b))	1	
	(ii)	mass of $Cl = 5.70-1.44 = 4.26$ g \checkmark moles $Cl = 4.26/35.5 = 0.120$ mol \checkmark 5.70/35.5 = 0.161 mol gets 1 mark	2	
	(iii)	Ti: $Cl = 0.0301 : 0.12 = 1:4$. Empirical formula = Ti $Cl_4 \checkmark$ 0.0301 : 0.161 mol gives Ti Cl_5 for 1 mark	1	
	(iv)	Ti + 2C l_2 → TiC l_4 ✓ (ecf possible from (iii) covalent ✓	1	-
				[5]

moles $CO_2 = 1000 / 44 \text{ mol} = 22.7 \text{ mol} \checkmark$

volume CO_2 in 2000 = 22.7 × 24 = 545 dm³ \checkmark

18.

(i)

21. (a)
$$\dots$$
 Mg(OH)₂(s) + 2 \dots HCl(aq) $\rightarrow \dots$ MgCl₂(aq) + 2 \dots H₂O(l) \checkmark 1

	(b)	(i)	moles $\text{HC}l = 0.108 \times 500/1000 = 0.054$ 🗸	1		
		(ii)	moles Mg(OH) ₂ = $\frac{1}{2} \times$ moles HCl = 0.027 \checkmark molar mass of Mg(OH) ₂ = 24.3 + 17 \times 2 = 58.3 \checkmark (do not penalise 24)			
			mass Mg(OH) ₂ = $58.3 \times 0.027 = 1.57$ g / 1.5741 g \checkmark (accept ans from (ii) $\times 0.027 = 1.566$ g) (mass Mg(OH) ₂ of 3.15 g would score 2 marks as 'ecf' as molar ratio has not been identified)	3		
		(iii)	Too much if 2.42 g (dose) > ans to (ii) \checkmark (If answer to (ii) > 2.42 g then 'correct' response here would be 'Not enough'	1	[6]	
22.	(i)	Num mole	aber AND type of atoms (making up a ccule)/number of atoms of each element ✓ <i>Not ratio</i>	1	1	
	(ii)	P ₄ +	$6 \operatorname{Br}_2 \to 4 \operatorname{PBr}_3 \checkmark$	1		
	(iii)	ratio /= 0. /= 1 Fmn	P: Br = $16.2/31$: $83.8/79.9$ 52: 1.05 : $2\checkmark$			
		Corr not I	ect compound = P_2Br_4 /phosphorus(II) bromide but PBr ₂ \checkmark	3	[5]	
23.	(i)	mass mole (1 m	s of Ni = 2.0g \checkmark es of Ni = 2.0/58.7 mol = 0.0341/0.034 mol \checkmark ark would typically result from no use of 25% \rightarrow 0.136 mol)	2		
		2nd i	mark is for the mass of Ni divided by 58.7			
	(ii)	num	ber of atoms of Ni = $6.02 \times 10^{23} \times 0.0341$	1		
		= 2.0	$0.5 \times 10^{22} / 2.1 \times 10^{22}$ atoms \checkmark			
		Can	be rounded down to 2.1 or 2.0 or 2 (if 2.0)			
		From	n 8 g, ans = $8.18/8.2 \times 10^{22}$			
		(and	other consequential responses)		[3]	